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ABSTRACT. The presence of waves in a rocket chamber depends [ < @)
on the relative importance of energy supplied by interactfon ... o
with the combustion processes and energy lost through dissi- (7 0
pative processes. As an aid to assessing the latter, the > .
cold-flow rocket appears to be a promising tool for both 8 =2 -4
research and development. Combustion is absent and acoustic =5 (O
> L

waves are excited mechanically in a chamber through which a =
steady flow is maintained. The analysis presented here is g
intended to serve as a basis for interpreting such measure- =
ments. Only the case of axial, or longitudinal waves is = e
treated, and results show mainly how the losses at the exhaust,D !
end of the chamber may be inferred from measurements of the ’
transient response and the frequency response of a chamber.
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FOREWORD -

This report presents the results of an analytical study of
one-dimensional wave behavior in channels terminated by a nozzle.
The effect of the nozzle on the flow field is given in terms of
this acoustic admittance at the nozzle entrance. A comparison is
made of the behavior of freely decaying waves and of steady-state
waves driven at the head end of the channel.

The material in the report should be helpful in the planning
of cold-flow experiments to determine acoustic damping constants.
It should also aid in the correlation and interpretation of the
experimental results of such tests.
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A Admittance at boundary, defined by Eq. 9 E
a Sonic velocity, also "effective" plane where mean chamber i
conditiens are reached (Fig. 1) tig

-

b "Effective" plane of nozzle entrance (Fig. 1) %
° Specific heat at constant pressure
D Dimensionless expression defined by Eq. 35

‘ ’ e

é‘z Unit axial vector o
Dimensional frequency; also "non-homogeneous" part of pressure ‘ \
boundary equation (Eq. 8) NY
"Non-homogeneous" part of pressure wave equation (Eq. 7)

k Non-dimensional wave number for steady oscillations ;? "
k, Non-dimensional wave number for purely axial mode oscillations :;331
kN Non-dimensional wave nmumber for classical mode oscillations -:
L Chamber length i
! Axial mode mumber (k,/m) £
M Mach number *
M_‘ Magnitude of Mach mumber perturbation at head end of chamber i
N Dimensionless expression defined by Eq. 3k \
f Normal unit vector -
p Pressure L-' ,-~_
Q Resonance quality factor -
R Radius of chamber ).
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Dimensionless radius (r/L)

Cross-sectional area of chamber

Nozzle entrance area

Dimensionless entropy (T -p’/p)

Time; non-dimensional following Eq. 2 L(real time)/(L/a)]
Velocity

Square of the absolute value of complex non-dimensional nozzle
admittance (2 + 62)

Dimensional axial distance from head end of chamber
Dimensionless head-end impedance (ﬂ/MS')

Dimensionless length measured from head end of chamber (x/L)
Attenuation constant, also dimensionless group in Eq. 43 and real
part of ¢ (Eq. 45)

Dimensionless group in Eq. 43, also imaginary part of ¢ (Eq. 45)
Ratio of specific heats

Shift from closed tube resonant frequency due to the presence of
a nozzle (Qp-tn)

Shift from resonant frequency at half-power point [i(Qp- é)]

Non-dime?sional space coordinate in a moving coordinate system
(z ~ Mt
c

Non-dimensional pressure (p’/vp)

Imaginary part of non-dimensional nozzle admittance
Inmaginary part of k

Wavelength

Real part of non-dimensional nozzle admittance
Density

Non-dimensional time (used in variable transformation)
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¢ Phase angle betveen velocity and pressure perturbations, also :_
tan™"n(-A_ ), see Eq. 29 b

¥, Classical closed chamber pressure mode for purely axial oscillations ) 3

’N Classical closed chambe > pressure mode ?g.f

Q Real part of k _ ;,-
Non-dimensional frequency defined as 0/(L - u‘:“)2 E,i

® Dimensional angular frequency E;;-.
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P Peak value
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£ Half-power point ]
SUPERSCRIPTS ‘ ;:;
(1) Imaginary part of complex expression j-;l

L

+ —oe
S e .
PR O A
STttt ety
P

(r) Real part of complex expression

s

R
>
X

e T . o
it b A0 A 10!

Perturbation quantity

P 2eld
/

(o
B . .

- Mean value

= Vector quantity

<
e
A L‘l‘

P
e

l' *
L




| WL

-

—— -

OB KA A0 3 1A A T 4 S L PRSI S SRS H A T A 2 T e RIS R VR ANICT Oy
NWC TP 45hh

I. INTRODUCTION

An understanding of the behavior of waves in a rocket chamber rests
essentially on knowledge of the various sources and sinks of energy.
The primary source of energy is of course the propellant itself and the
driving mechanism is associated with a coupling between the wave motions
and the combustion process. It appears possible to isolate this aspect
of the problem, so far as solid propellant rockets are concerned, not
only analytically, but also experimentally (Ref. 1 and 2). With suf-
ficient development, the T-burner and L¥-burner may provide adequate
means for studying the coupling (interpreted often as an "admittance
function") without firing a complete rocket.

But the source of energy is only half of the problem. It is always
present, and in order that a rocket burn stably, there must exist ways
for wave energy to be dissipated at a rate greater than that at which the

combustion process provides energy. In some respects, it 1s theoretically

more difficult to assess the losses than the gains. Indeed, it is possi-

ble to compute much of the energy losses only for relatively simple geome-

tries, and even in those cases, approximations are necessary. Hence one
would like also to be able to measure the losses separately.

Since the losses associated with a chamber are strongly influenced
by the geometry, which in turn affects the mean flow, it is in fact
necessary to work with a chamber, perhaps scaled down. The problem is
simplified by using an external source of cold gas, rather than burning,
for the flow in the rocket. Acoustic oscillations may be excited, also
by external means, and the attenuation of the waves inferred in a manner
described below. Perhaps the simplest example of this kind of device is
illustrated in Fig. 1 (see Ref. 3 and 4). The chamber is fitted with'a
nozzle which normally is choked. Air flows through the porous plate at
the head end, and oscillatlions are excited by a rotary valve upstream of
the porous plate. An alternative way is to drive the oscillations with
a small speaker.

This configuration evidently simulates an end-burning rocket, which
seems quite restrictive. However, the measurements will provide infor-
mation principally about the damping of waves due to the action of the
exhaust end of the chamber, i.e., the effect of the nozzle and also non-
uniformities in the flow Just upstream of the nozzle entrance. It is not
possible to separate these in the experiments. Clearly the results are
applicable to other kinds of rockets having similar exhaust configura-
tions. The more serious limitation is that in the measurements reported
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in Ref. 3 and 4, only axial modes have been treated. In this report as
wvell, only axial modes will be discussed, but much of the treatment can
be extended to radial and tangential modes. .
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FIG. 1. Sketch of a Cold-Flow Rocket.

The following remarks are concerned with an analysis of the axial
modes, with a purely axial mean flow. It is not the intent here to com-
pute the actual damping to be expected, for in fact this can be done only
for simple cases. Rather, it is more important to determine how the
formal analysis can be used as an aid to interpreting the experimental
data, thereby ylelding useful numerical results which cannot be obtained
by calculation alone.

First, a relatively general treatment of the problem will be covered, )
based on earlier work (Ref. 5); this leads to formulas for the frequency s
and attenuation coefficient for freely decaying waves. Then traveling '
and standing waves in a uniform mean flow will be treated. The analysis
is specifically for the case when waves are driven at one end of the
chamber. Formulas for the frequency response and the standing wave ratio
are found. Perhaps the most important result is the relation between the
attenuation coefficient and the properties of the frequency response.

The conditions under which the familiar definition of "Q" is valid are
found.

The three calculations mentioned in the previous paragraph correspond N
to the three kinds of measurements most easily made: direct measurement . O

of the attenuation of waves, the frequency response, and amplitude of fjﬁ‘
ib
2 b \’:1
S
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of pressure as a function of position in the chamber (i.e., standing wave
ratio). Thus the results are immediately applicable to experimental work.

II. GOVERNING EQUATIONS FOR ACOUSTIC OSCILLATIONS
IN COLD-FLOW ROCKETS

A rather general analysis of acoustic oscillations in rocket chambers
exists (Ref. 5) and it will be specialized in this section to the uimpler
case of a cold-flow rocket with axial mean flow. Only axial modes are
discussed, but it is necessary, for a reason apparent shortly, to retain
the equations in three-dimensional form. Extension to other modes may
be carried out by following the analysis of Ref. 5. It is convenient
for the analysis of the acoustics of rocket chambers to use an equation
for the pressure rather than temperature, so that the three equations
for inviscid flow of a perfect gas are

249 (pa) =0

-
—

%+u'%‘+%=o

g% + YV cu+u-Wp=0

The last may be found by combining the usual energy equation with the
continuity equation. In the usual way, all quantities are written as
sums of mean values, independent of time but in general functions of
position, and fluctuations which vary with both time and position in the
chamber. The complete perturbation equations may be put in the form

-, —t nd /7 =
%;u—-+ﬁ-Vu'+u'-Vﬁ+V(a2T1)+§-Yg=0 (1)
°p P
b
' e PR = s
%‘+w’v-u+vpv-u’+u-Vp’+u’-VP=o (2)

where a 1s the mean speed of sound, N =p /vp, and s’ =T - p'/p is the
fluctuation of entropy. For applications to the low Mach number flow in
a cold rocket, it 1s not necessary to include variations in the mean
pressure and temperature. The equations have the simpler form
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M on-w i A8 (3) 3
S+h-M+yw-R+9 K =0 (8) g

All veriables are now dimnsionlessL t is the real time divided by L/e, .
L being the length of the chmber, # -u/i, M =u '/a, and all lengths o

are normalized with respect to L. Hereafter, V « M = 0 will be assumed. ;

This is a consequence of the low speeds imvolved, but it cannot be
assumed 1f there is combustion in the chamber. »
III. APPROXIMATE SCLUTION FOR THE FREQUENCY AND L
ATTENUATION OF STANDING WAVES : o

The results obtained in this section will apply to waves which are D:"':'
not driven by external means. A wave equation for 7 is found in the .
usual way by taking the time deriwative of Eq. 4 and substituting ‘Eq. 3 __,':.
‘for M’ /3t A
. '

S VE{l -[u Wi’ o+ M -vﬁ] o

The boundary conditions on T are set in accord with Eq. 3

p) -~ - - -
oo R W)

For ease in writing, the last two equations wlll be written, in the case
of steady waves, as

V2ﬂ+k2'ﬂ=h (5)

A M=-f(onz=0,2=1) (6)
where

=m’t-vn-v.(ﬁ-V&"+i°'-Vﬂ) | (1)

f=1kAﬂ+(M-vI4"+ii’-vﬁ)-’x} (8)
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The unknown boundary values of the Mach number (or velocity) fluctuations
have been replaced in Eq. 8 by admittance functions A defined so that the

normal components of the fluctuations are proportional to the pressure
fluctuations,

=2

M .4 = an (9)

In general, A is a complex function, A = PG 1A(i) = |A|e1¢, 50 that
the real part gives that part of the normal velocity fluctuation up which

is in phase with the pressure: n!.' = A(r)—a;-)p'. But the rate at which
'vl\ o
work is done on or by the waves at the end surfaces is up'p’'= A("iéip')e.
Yp
Consequently, it is the real part of the admittance function waich will
be related to the damping of the waves.

For the cases treated here (and usually in rocket chambers), the
* boundaries and the mean flow cause only small perturbations from the
classical closed chamber modes'VN which satisfy the equations

vQYN + szvN =0 (10)

0, 1

AW = R/L (ll)

=

o
—
H N
|

where R is the radius of the cylindrical chamber. For these modes in a
closed chamber, the normal gradient of pressure vanishes at the ends,

since ¥p’ = YPVM = YpW¥y here. But by Eq. 3 with lf = O and M’ varying
harmonically

(M’/3t = 1,d’), M = -VM/1k, or u' = - TN = - [GIY

Hence since A - VY¥y vanishes on the boundary, so does the normal component -
of the velocity fluctuation. In the case of purely axial oscillationms, !!;d
¥y = cos (kgz) with ky = #m, L =1, 2, » - -. The idea of the following L

computation is that even with a nozzle or a porous head end, the mode L
shapes are not much changed from these classical vibrations; this is true S
1f the mean flow Mach number is small and if the admittance functions are -
small. It is not generally true if the - oscillations are driven at the N
head end, for the velocity fluctuation at that end may be given any value f:_4
and, correspondingly, the frequency may be changed at will.

The computation here is directed to determining the corrections to
kg = £m due to the mean flow and damping within the chamber or at the

boundaries. It is a simple matter to compute the first-order approximation
5
v w w w - w w ) - - - - - - - = ___‘!—J

) W N PR L C - PP - .
T L ./ LRI OR S VUl S U S W > PP WA WU WUl D S P s sebndheodnnuts .‘




to k (the mean-flow Mach mmber is the small parsmeter). Multiply Eq. 5
by ¥y, Eq. 10 by T and subtract the equations; then integrate over the
volume of the chamber:

f/f (anan - nvev‘)a + (ka ] “na) ﬂf v - [U Y, bav

The volume integral on the left-hand side may be transformed by use of
Green's theorem, and Eq. 6 and 11 used for the surface conditions. One

finds
i = knz +’ o (M%mv +ﬂr¥w) (12)

There are really two surface integrals involving f--one over the plane
2z = 0 and one over z = 1.

To obiain a first-order approximation for the right-hand side, the
zeroth order approximation for M, N = Yy is used. In the case of purely
axial oscillations, Yy = cos (kgz) with kg = £7, and if one assumes

‘# to be axial only, M = ¥3,, then h and £ are approximately (i.e., to
order M)

ay 2 ( iy )
- £ i d 2
h = {kM ——e = oo e (M e (13)
dz kl dza dz
ay
= .1_.9'_ M _“
£ = 1KAY, + k] & (M = ) (14)

where the zeroth order approximation, derived from Eq. 3, has been used

used for M's M’ m (1/kg)(d¥4/dz). (Note that the exponential time factor

exp (1wt) = exp [1(wL/a) + (at/L)] 1s exp (1k&) in dimensionless form,
and to zeroth order k = ky = £7.) The volume integral in Eq. 12 may now
be simplified b garrying out the integral over 2z with some use of the
fact that a%ﬁz = =ky°¥y. One finds

[ )

The surface integral, over z = QO and z = 1, gives
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f Y,tas = (ﬂyzfd‘f)z-l + (ﬂ\'zfds)z_o
- 1k, [( ﬂ AY£2d3)2=l + ( jf Avfds)z =o] - 1k, [}/]‘ ﬁvfds]:

After these results have been used in Eq. 12 the real and imaginary parts ’
of k = 1 + 1A are, to first order in ,* o
=k -2 Ay, [[)(1) y22e (15) o
z 2 ]
"3
RS
_ (r) v 2 ds (r) v 2 ds AN
A ‘J] AT et N s (16) Lk
[ c N7
b
in which S, is the cross-sectional area of the chamber and A = A(r) + :LA.(i)
in complex form. The admittance function for the nozzle end is A, and at s
the head end it is A,. DI
| It is now apparent why the calculations were not immediately reduced T:
10 one-dimensional form. If that step had been taken, then the important By
(and obvious) result that the surface integrals must be weighted by the o
appropriate areas would not have appeared. Thus, for exampli 2 if the .-,j'_.:‘_
nozzle eptrance area is S;, the damping term in Eq. 16 is A, )Sp/sc, i
since ¥4 =1 at z = 1. N
The formulas 15 and 16 are valid for the axial modes with one- ",.
dimensional mean flow, subject to the restriction that the Mach number of s
the mean flow must be small. Hence, care must be taken when these are P
used for a rocket with an abrupt change of cross section, from the port
area to a sonic nozzle as sketched in Fig. 1. There are evidently regions 3 .
of rapid variations in mean-flow properties near the porous head plate and ‘_:
near the nozzle. Average streamlines have been sketched. The expressions —
15 and 16 are valid only in the region between the planes at a and b,
between vhich the Mach number is approximately constant, equal to M, when el
there 1is no burning. f»f f;;
It appears that the region near the:porous plate may be so thin that .
as an approximation, position a is in fact at the origin, and the e
1,
* Note thatf Yz dz = # for L # 0. S
0 1
e
7 RN
Y
w w w 4 ‘- L 4 - - - - - j‘"




admittance function is then non-gero over the porous area (Sp) at most
(the velocity fluctuation is elsevhere zero on z = 0). But yet the
influence of the mean flow may be represented by the average chamber Mach
number acting over the entire chamber area. Note that the volume integral
of h and the part of f depending on Mach number cancel, which happens only
if M is constant. This is merely a statement of the fact that if the flow
is uniform, the rate of convection of wave energy into the region bounded
by two planes normal to the flow is obviously equal to the rate of con-
vection out. Then, if the admittance functions are constant over the
corresponding areas, Eg. 15 and 16 become

8
F - kf[ - %(Ao(i) §f + Ap(i))] (17)
A= Ao(r) ;P- + An(r) (18)

e
To first order, then

S
£
kak, [1 + 1(Sc A, +An)]

The effects at the exhaust end, including rapid acceleration to the
sonic throat and eddies of some sort which must exist in the corners of
the chamber, have been included in A,. It is obviously not reasonable to
calculate this quantity which is more than just the nozzle admiicance
function. But, on the other hand, if one tries to extend the region in
which the standing waves exist (i.e., b = 1), then the equations for the

waves must be seriously complicated, both because [M| 1s not small and
because M is no longer in the axial direction. The analysis by Cantrell,
McClure, and Hart (Ref. 6) is of course subject to the same restrictions.
If the nozzle convergent fairs more or less smoothly to the chamber, then
An 1s indeed almost entirely the nozzle admittance function, which can b
calculated independently. -

It 1s these difficulties which lead one to use the analysis as a
guide to interpretation of experimental results, rather than as a means
of thorough computation. According to Eq. 16 and 17, the amplitude of a
wave varies with time as

]
p'= em-exp[-(Ao(") -::E + An(r))t] exp{ikl[ . %(Ao(i) -:f + An(i))] t}

In terms of dimensional quantities, the attenuation constant a is
therefore




a= %(An(r) + Ao(r) -:2) gec”t _ (19)

and the angular frequency of fmeely decaying waves is

w = m% P1 - % (An(i) + Ao(i) ;3) sec™t (20)
’ C
-8 Ll - -}F(An(i) + Ao(i) ;f)] sec™t

Equations 19 and 20 are applicable to, for example, experiments involving
the explosion of a small charge and measurement of the decay rate and
frequency of subsequent waves. They are valid, in fact, for a port of any
shape sC long as it is straight. If the Mach number is not uniform, some
of the integrals in Eq. 15 and 16 contribute additional terms.

IV. WAVES WITH UNIFORM MEAN FLOW

For studying the frequency response when waves are driven, it is best
to incorporate at the very beginning the fact that the mean flow is uni-
form (although as in the previous section, the cross section of the
cgamber need not be circular). The governing first-order equations for
M, the axial Mach number fluctuation, and T, are

O @

Sem PrP-o (c2)

in which M, is the Mach number of flow in the chamber. The case of
transient gecay of waves, i.e., the transient response of the chamber,
has already been treated, with the results givem in Eg. 19 and 20. In
this section, the analysis of the frequency response is begun.

By analogy with the familiar ideas of "lumped" electrical circuits
and mechanical systems, one expects the width of the peak in the fre-
quency response to be proportional to the attenuation constant, Eq. 19,
associated with the transient response. Some experiments (Ref. 3 for
example) have in fact shown quite good agreement, but it is not obvious
why this should be so. Indeed, the calculations here indicate that the
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agreement may imply that the admittance functiom for the porous plate

(and hence the associated attenuation) is negligible compared to the

effects of the exhaust end of the chamber. This was intended to be the \
case in the experiments (Ref. k).

When standing waves are sustained by external means, the analysis is
often instructively cast in terms of traveling waves (as, for example, in

the problem of a transmission line which the present problem closely a®
resembles). If one performs the coordinate transformation 39
™=t E‘é?
=2 - Mct
-
then Eq. 21 and 22 become 3
’ L
g0 3
-
, .
which imply the wave equations
k4
N
F A\ M | &
- —2 = o (25 ) E’.'-
= S\

. "<‘l."l..
e,

B R

Obviously then, one has two solutions, corresponding to waves traveling
to the left and to the right. Alternatively, the wave equations in t,
2z coordinates are

2\ & -l Lo 3
1-M°) - - — =0 (24)
In any case, the complete solutions can be written o
b
R R s J (25) B
c (o] i

M = éiﬂt [M+ ei T +0M z + M el -l-_o—u- z] (26)

c c

v en e
o

Note that the frequencies of the two waves are not the same:

Q, =Q/(1 + M,) for the wave to the right, and O_ = /(1 - M) for the ‘
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wave to the left. This is the "Doppler effect" often mentioned in the
literature of acoustics applied to rockets, but not usually shown. A
wave of frequency 7 in the laboratory and traveling in the direction of
the moving stream has a lower frequency with respect to the stream.
Substitution of these expressions into one of the first-order Eq. 21 or
22 shows that

M+='ﬂ+

M

-1 (27)

Now in the case of the cold-flow rocket experiments, the waves are
driven at the head end. A solution corresponding to the standing wave
exlsting at any frequency is obtained by superposing the correct amount
of + and - waves to satisfy the boundary condition at the exhaust end,
assumed here to be at a plane as suggested by Fig. 1 and associated
remarks. One can imagine that a wave traveling to the right is partly
reflected and partly transmitted; the amplitude and phase of the reflected
wave is so determined as to have a standing wave observed in the labora-
tory. The ratio of amplitudes of the impinging and reflected waves is
usually called the "standing wave ratio." 1In accord with previous
remarks, let all effects at the exhaust end be represented by the
admittance function Ah’ so that at z = 1

M/n = A (28)

The plane z = 1 is actually slightly displaced from the end plate--it is
labeled b in Fig. 1. Note again that A, includes more than simply the
nozzle admittance function. Hence Eq. 25-27 imply

where Q = Q/(1 - Mc2) and use has been made of the fact that

Q - - 0 = -
1-Mc‘Mc°+O" l+Mc_-McQ+Q

Hence the complex amplitude of the wave traveling to the left is

-21iQ
n. T]+ 1L+A
n
11
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and the solutioms for 1), M are

- - I:-"v - )
n_memt*mz-m[g-ﬁ(z-l)* .’if‘.m(z.l)]
u'.n+,ﬂ’**i""e"-*ﬁE-m('-l)-i:::.ﬁ“-l)]

vhich can also be written as
ﬂ--ép-ﬁ—]_-em"ﬁ(uc”l) [cosﬁ(z-l)-ubainﬁ(z-l)]
o . B e+ di(Mez - 1) 2 a
M i TT°® [Ancosﬂ(z-l)-isinﬂ(z-l)]
n

Now define ¢ by tanh ¢ = -A and

" i’)hcosh? o0+ 100Mez = 1) o A - 1) + 4] (29)
M - o i-;’»,coah : o2 + 2006t - 1) oy [46(z - 1) + 4] (30) f'
These results will be used to describe interpretation of measurements of ’,1

the steady-state frequency response and of the amplitude of oscillations
along the chamber axis.

V. FREQUENCY RESPONSE

The measurements have been made of pressure at the head end. It may
be supposed that the oscillations are driven t;y rlugt ons in velocity,
or Mach number, at the head end. Thus, let M = e at z = 0, and
Eq. 29 gives

’ 16
an, -Mo e

I O R )
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Then the measured frequency response is represented by

1 =_1f.ldczcosh[iﬂz-l + 9]
M7= e sinh (¢ - 1) (31)

In particular, at z = 0,

which can be expanded to

1 +31A tan Q ~
il - n (32)
M7 A +1itan ) 3
0 /z=0 n
It is particularly important to note that since the waves are driven '}‘
by perturbations at the porous plate, the influence of that region (con- A
tained in A, defined earlier) cannot appear: they are combined with the .»
external driving mechanism to provide, for a given ’frequency and magni- 2.
tude of pressure fluctuation, just the value of M, required to maintain o
a steady oscillation. Hence measurements made with a transducer in the 3
porous plate can yield no information about the admittance function to v
be associated with the porous plate when waves are decaying freely within o
the chamber. Let A, = u + 18: .
T _(1L-08tan Q) + 1 (p tan Q)
(M ’) - p+i (9 + tan Q) __
© /2=0 A
and : _
i (L-90+¢t 0)2 + (p tan 0)2 ¥ N x
o lz=0 k" + (8 + tan 0) o
N
where o]
2 .".-.':’;
N=Xtan® Q- 20 tan Q + 1 (34) |
D=tan29+29 tan O + X (35)
X =+ 68 (56) i
5
e
13 T
ey
T
o
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The function |2(Q)]/|Z(Q) |omo 18 Plottcd in Pig. 2-6 for several
representative values of p and §. Peaks occur at frequencies Q= n¥
which, when both p and 0 are small, are close to the frequencies of the
natural model for a closed chamber(Q, a £m) and close to the frequencies
of transient oscillations (Eq. 20) but not necessarily equal to either.
The peaks are determined from the condition

g%gg)_t =0 (37)

i
2=
To simplify calculations, and also to avoid introducing further unknown lee
quantities, suppose that both € and p are slowly varying functions of {2 ba
near the peak, then both d8/d0 and du/dN will be set equal to zero. Ome ]
finds then that Q, is the solution to ,
X2
2 X - e,
tan“ Q0+ tanQ - 1=0 8
P ( g ) P (38)

Thus

-]
om0 - X - L) 4 (29)

The sign on the radical cannot be fixed uniquely. In the limit of
small 8 and u the negative sign is the correct choice, for then Eq. 39

gives -k
£

tan Q0 = - =2 _ =~ ~0 ':

P l1-X vy

and hence o
>

Qp s AT - O (40) e

which is exactly the correction, due to the nozzle, shown in Eq. 20 for

the frequency of the transient response. On the other hand, peaks do \
exist for far removed from £7"; a particularly interesting limit is .
found by taking the positive sign in Eq. 39, with € small, for which

Eq. 39 becomes :\

Vg

2 l:‘.‘

tan Qs L 5 . - -9“ (b1) k‘_'i.

Let 1 - u2 be non-zero, and for € — O the peak frequencies fall in the -”.;.':;

neighborhood of multiples of m/2 , as shown later by the mmerical b
results. S
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FIG. 2. Dimensionless Impedance at Head End as a Function of
Frequency 9 = O.
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FIG. 4. Dimensionless Impedance at Head End as a Function of
Frequency 9 = 0.1.
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Of greater practical interest is the width of the peak, for one ) .
expects by analogy with electrical circuits and simple mechanical systems,
that this should be related to the damping of the system. Experiments
(Ref. 3 and 4) have shown that the peak is often narrow; the width at the
"half-power points," i.e., the frequencles at which |/My’| is down by
1//2 will be denoted by 2e. For © and p small, the frequencies at the
half-power points are therefore approximately 47 + & + e. For this
limiting case, the peak value of |Z] is

7]~ [Ll + 8°)° 4+ (pe)"’]%
max 2

.,_.',. ’ v
TSR]
AN )
Jaie .

)
1"

n =
and the value at the half-power points is ii
- % o
'le ~ [1- 8(e - 9)]2 +Ee(e - 6)2 B r»:.':
” p,2 + (0 + €= 9)2 ':‘_
The condition for finding € is therefore "
(.
[1-6(e-0)F +,P(c-8)7 14 +6%)° 4+ 2 %
2 2 2 2 KR
U + e u o
and one finds ;;
e~tu (w0 <<1) b

Hence, under these conditions, the width of the peak (2e¢ =~ 2u) is
twice the attenuation constant for the transient oscillations (Eq. 19)
providing the por?ui plate does not cause much damping of the transient
motions (i.e., AG\T) = 0). Tt follows that in this case, the damping at
the exhaust end may indeed be found from Q = /2e; this is valid, then,
when the response has a narrow peak, associated with relatively light Qo
damping. The attenuation constant is -

AR AR
Y A

PES Bie il '
R

W 0
- -&_p_2
a_E%_LEQ_L(ee) (k2)

It appears therefore that 1f agreement is found between the value given
by Eq. 41 (i.e., by measurement of the frequency response) and the value
given by Eq. 18 (i.e., by measurement of the transient response) then the
real part of A; must be negligibly small. That is, assuming always a
lightly damped system, so that the approximations leading to Eq. 40 and
L1 are valid, one would conclude that the porous plate contributes
insignificant damping.

e e e - b -
R ‘ B . P L T
o . . . et
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Not all experiments yield narrow peaks in the frequency response and
in those cases the approximate calculation used above i{s not valid. One
cannot compute the transient attenuation constant from the simple for-
mula 42 involving Q. It is necessary to use some sort of graphical pro-
cedure such as the following. The values of lZ] at the half-power points
are still given by

K
AT -

where R are the values of N, D for Q = Q. This equation, with N and
D given by Eq. 3k and 35, leads to & quadrati® equation for tan Q,the
tangent of the normalized frequency at the half-power points:

-20(D_ + N /2)] {D_ - XN /2
tan® Q + tan O [ 2X§§ - ﬁi ]+ [?gb - §§7§] =0 (43)

From Eq. 43 one can find tan Q and hence Q) at the upper and lower half-
power points as functions of u and ©. The results are conveniently
displayed in the forms shown in Fig. T-10.

Those graphs can be used to determine both the real and imaginary
parts of the sdmittance function at the exhaust end by measurement of the
frequency of the peak and the width of the response function. The same
information has been cross-plotted in several ways; it is not clear at
this time just which form may be most convenient for use in the
interpretation of data.

Note that in Fig. 2~6, the impedance has been normalized with respect
to its value at zero frequency. Those charts also show a feature remarked
upon earlier in connection with Eq. 39, that the frequencies of the peaks
need not be close to the values for a closed chamber in the absence of
flow. However, it appears that in practice, both u and © are small so
that in fact Q, lies near £m, as shown by Eq. 40

In Fig. 7, there are several limiting values which should be men-
tioned. The case € = O yields a resonant frequency of 47 if u < 1 and
n/2 1f 4 > 1. This behavior may also be seen in Fig. 2, and follows
from Eq. 40 and 41, which show that the switch between values occurs at
M =1l. The limiting case © = ® can also be extracted from Eq. L4l.

A quantity called "maximum half-power bandwidth,"” equal to ™ appears
in Fig. 8-10. This 1is also a limiting case, which arises because the
impedance Z is precisely periodic in 01 with period 7. That the period
is T can be shown easily by substituting O + 7 for Q in Eq. 33. This is
exactly true only if p and @ are both taken to be independent of frequency,
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an assumption used in all the graphical results. However, this means
that the distance between peaks is 7 alvays, and therefore the maximm
bandwidth is also 7, being n/2 on each side of & given peak. .

VI. APLITUIE OF OSCILLATIONS ALONG THE CHAMBER;
STANDING WAVE RATIO

If provision is made for measuring pressure fluctuations as a function
of position along the axis, the real and imaginary parts of A, may be
determined much more readily. Equation 31 gives

ot

’

PR ) DRERRRY i ST LH py DRTRRIED &

R

eim"'l |cosh [i(z - 1) + ¢]]

=

# TR
¢ 3

= |cosh [¢ + ifi(z - 1)]|

= \Loshza - sin® [ - g(z -1)] (44)

where

d=a+ip = tanh'l(-An) = tanh™(-u - 18) . (45)

This last equation can be split into real and imaginary parts:

“=-11:1n [.QLE).Q_I_%] (46)

1-a)P+8

1 -1 -
0 = 3 tan [1—?-?22-?] (57)

Equation bl shows that [N has a maximum value (for a given frequency and
M4, Or My') wvhen 8 - Q(z - 1) =0, m, 2m, . . ., that is, vhen

QL ~z)=nm-p

2)2

T °P8, and real

or, in terms of the real frequency f = 22"- (- M,
distance x = zL,

2nt

(L -x)=nm-p

af1 - Mcz)




Thus, the first maximum occurs at a distance

2y A
(L -x)=(-p)(1 -M") 5
from the exhaust if B < 0, and at a distance

(L - x)

(m-8)1-M2) &

a/f).

Moreover, |7| has a minimum value when

iro<pg<nm (A

;(1—2'_'%‘?)-(L-x)=(n+%-)ﬂ-ﬁ (50)

i.e., at a distance

L-x)=@G-p0a-u2 X (51)
from the exhaust end, if B < m/2, or

v 2y A
L-x)=(F-8)01-M5) 5

(52)
if B < 3n/2.

The ratio of the maximm to minimum values of T is

4:}max = cosh @ = tanh a
min «/cosh2 -1

(53)

Evidently, then, measurement of the positibn of & maximum or minimum
of |N| and the ratic |M|pax/|M|min 1s sufficient to determine a and B
from Eq. 48 and 49, or 51 and 52.

Finally, u and 8 can be computed from
Eq. 46 and 47. An alternative approach is to use a graphical represen-

tation such as the Smith chart commonly employed in calculations for
transmission lines.

(See also Chapter VI of Ref. 7.) If these results
are combined with measurement of the attenuation constant of freely

decaying waves, then the real parts of the admittance functions for both
ends of the chamber will be known.

(18)

(9)
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VII. CONCLUDING REMARKS

It must be emphasized that the calculations covered in this report
are intended to be coupled closely with experimental work in an effort
to determine the acoustic losses associated with a rocket chamber.
Although some contributions to the dissipation of energy can be computed
quite accurately, such as that due to viscous shear at the walls, others
which have been noted earlier, are simply beyond analysis. Moreover, the
techniques discussed here can probably be extended to awkward geometries.

The principal results of the present analysis are the following:

1. The computations in section III give simple formulas for the
frequency and attenuation constant for each natural mode (Eq. 17 and 18)

vhen the influences of the ends can be lumped into simple admittance if:
functions. This implies that the regions of transition between the uni- ?:
form flow in the chamber and the end surfaces must be short compared to éﬁ?
the chamber length; or, better, that A, and Ay must be small. S

2. The frequencies of the natural modes are not in general equal to
the frequencies at which the steady-state frequ?nsy response has peaks.
The former occurs at normalized values £m - (A,\T/) + ) according to
Eq. 17. The latter occur when Eq. 33 has maxima. For a given mode, the
two values are approximately equal when Ap is small and A, 1s negligible.

3. The width of the peak in the frequency response is simply related
to the transient attenuation constant only when A, is small and Aq is
negligible. If A, is not small (i.e., the peak is broad, low Q), then
the width of the peak is related to both the real and imaginary parts of
Ap, but interpretation is best done graphically by making use of Fig. 2-10.

L. Measurement of the positions of maxima and minima, and the ratio e
of maximum to minimm ("standing wave ratio”) will give the real and
imaginary parts of directly. If the measurements can be made without .
great difficulty, then this seems to be & better means of determining the .
losses assoclated with the exhaust end of the chamber. 2"

5. The experimental results so far reported indicate that the losses, SR
and the shift of frequency, due to the exhaust flow are very much larger * K
than those due to the porous plate. That is, under most conditions, the -
porous plate seems to offer "infinite impedance.” However, the validity [-.o0
of these results is questionable at the present time owing to some s
internal inconsistencies; thus the data have not been examined here.

Determination of the acoustic losses in a rocket by making measure-
ments in a laboratory scale model, without burning, appears at the present
time to be a very promising ald to design. However, the experimental work
has not yet been sufficiently developed to make extensive use of the
calculations discussed here.
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